Relational Databases – a simplified account
Definitions

A relational database is a collection of relations and the relationships between them.

A relation is a collection of data about different entities that can be visualized as a table with the following properties:

the table is rectangular

each row of the table contains data about one entity

each row is distinct and row order does not matter

each column of the table represents a single attribute of the entity

each column is distinctly named and column order does not matter

there is a primary key.

A primary key is the smallest collection of columns in a table that will uniquely identify a given row.

A relationship is a connection between relations based on common columns.
Normalisation

A well designed relational database is normalised. Normalisation can improve efficiency in terms of data access times and, more importantly, minimises data integrity issues.
The process of normalisation involves applying a series of six rules in order. We need only be concerned with the first three: first normal form (1NF), second normal form (2NF), and third normal form (3NF).
The rules

1NF:
To be in 1NF a table must have no repeating groups.

2NF:
To be in 2NF a table must be in 1NF and any column that is not part of the primary key must be dependent on the whole primary key.

3NF:
To be in 3NF a table must be in 2NF and any column that is not part of the primary key must be dependent only on the primary key and no other column.

Column B is dependent on column A if, for a given value in column A, column B always the ‘returns’ the same value. In other words, a given value in column A will always determine exactly what value is found in column B.
Some discussion
1NF basically tries to ensure that a table of data is in fact a relation by eliminating repeating groups. The question is what constitutes a repeating group? There are essentially two forms:
	Table A
	
	Table B

	Name
	Phone
	
	Name
	Phone1
	Phone2

	Max Min
	03 5435 6789

03 5435 7540
	
	Max Min
	03 5435 6789

	03 5435 7540

Table A is obvious – repeating values within a column (or columns).
Table B is less obvious – repeating columns. Although each phone column is distinct in name, the nature of the data in them is not. Purist would consider this a repeating group.

Both kinds of repetition cause problems for any queries, calculated fields, relationships and reports that might be based on the columns involved in the repetition.
The property of a relation referring to attributes combined with the 1NF rules lead to the conclusion that a single cell in a table must contain only one value. This is fine, but in turn leads to the idea that all data must be decomposed to its most simple constituents. For example, it could be argued that for Table A to be in 1NF, the Name column should be split in two: First Name and Last Name. This idea is wrong – what constitutes a value for a column (attribute) is a design decision based on what the data is to be used for. If, to continue the example, the designer knew that Name was never going to be used as a sort key or in the selection criteria of a query, then a decision could be made to have a person’s full name as the value to be placed in the name column.
In computing terms, data is an assembly of bits. At what level of assembly, from byte to novel, one chooses to assign the word value to the assembly is a design decision that is not addressed by normalisation rules.

Normalisation - a short example
Suppose we have this row of data in a given table. StudentID is designated the primary key.
	StudentID
	StudentName
	Address
	HouseName
	HouseColor
	Subject
	SubjectCost
	Grade

	19594332X
	Mary Watson
	10 Charles Street
	Bob
	Red
	English

Maths

Info Tech
	$50

$50

$100
	B

A

B+

Is a table containing this row normalized?
1NF?

There are repeating groups (Subject, SubjectCost, Grade)
So not 1NF.

How to fix?

1. Break the offending row(s) into as many rows as needed to have no more repeating groups, duplicating non‑repeating values

2. Adjust primary key to suit; that is, so the row can be uniquely identified.
	StudentID
	StudentName
	Address
	HouseName
	HouseColor
	Subject
	SubjectCost
	Grade

	19594332X
	Mary Watson
	10 Charles Street
	Bob
	Red
	English
	$50
	B

	19594332X
	Mary Watson
	10 Charles Street
	Bob
	Red
	Maths
	$50
	A

	19594332X
	Mary Watson
	10 Charles Street
	Bob
	Red
	Info Tech
	$100
	B+

Primary key must now be: StudentID + Subject (otherwise cannot uniquely id SubjectCost and Grade)
2NF?

Check 1NF – yes, OK.

But, StudentName, Address are dependent only on StudentID
and SubjectCost is dependent only on Subject.
That is, they are dependent on part of the primary key
So not 2NF.

Note: HouseName and HouseColor are also only dependent on StudentID but they present other problems as well.
How to fix?

1. Make a new table for each subset of primary key columns
2. Make the primary key for each new table the column(s) that gave rise to it
3. Place the remaining columns into the table that has their matching primary key.

Primary key subsets: StudentID, and Subject, and StudentID + Subject

	StudentTable
	

	StudentID
	StudentName
	Address
	HouseName
	HouseColor

	19594332X
	Mary Watson
	10 Charles Street
	Bob
	Red

	Primary key: StudentID
	

	SubjectTable
	
	GradesTable

	Subject
	SubjectCost
	
	StudentID
	Subject
	Grade

	English
	$50
	
	19594332X
	English
	B

	Maths
	$50
	
	19594332X
	Maths
	A

	Info Tech
	$100
	
	19594332X
	Info Tech
	B+

	Primary key: Subject
	
	Primary key: StudentID + Subject

Note that relationships start becoming an issue here (one-to-one? one-to-many? …)
continued
3NF?

Check 1NF – yes, OK

Check 2NF – yes, OK

Now, in the SubjectTable, SubjectCost is only dependent on the primary key (it doesn’t have much choice!)

and, in the GradesTable, Grade is only dependent on the primary key

and, in the StudentTable, StudentName and Address are only dependent on the primary key

but, also in the StudentTable, either HouseName is dependent on StudentID + HouseColor

or, HouseColor is dependent on StudentID + HouseName.

Either way, there is a field in StudentTable that is dependent on more than just the primary key.

So not 3NF.

For the sake of this example, let’s suppose that HouseColor is dependent on HouseName (ordinarily this kind of decision would come out of organisational policies or operating procedures).
Therefore, at present, HouseColor is dependent on StudentID + HouseName

How to fix?

1. Copy the column that is acting as a “secondary primary key” to a new table

2. Make this the primary key of the new table.

3. Move all the columns that are dependent on this “secondary primary key” to the new table.
	StudentTable
	
	HouseTable

	StudentID
	StudentName
	Address
	HouseName
	
	HouseName
	HouseColor

	19594332X
	Mary Watson
	10 Charles Street
	Bob
	
	Bob
	Red

	Primary key: StudentID
	
	
	Primary key: HouseName

The final table design

So, the “fully normalized” DB would be:
	StudentTable
	
	HouseTable

	StudentID
	StudentName
	Address
	HouseName
	
	HouseName
	HouseColor

	19594332X
	Mary Watson
	10 Charles Street
	Bob
	
	Bob
	Red

	Primary key: StudentID
	
	
	Primary key: HouseName

	SubjectTable
	
	GradesTable

	Subject
	SubjectCost
	
	StudentID
	Subject
	Grade

	English
	$50
	
	19594332X
	English
	B

	Maths
	$50
	
	19594332X
	Maths
	A

	Info Tech
	$100
	
	19594332X
	Info Tech
	B+

	Primary key: Subject
	
	Primary key: StudentID + Subject

And for interest, the relationships:

[image: image1.emf]StudentTable

StudentID*

StudentName

Address

HouseName

SubjectTable

Subject*

SubjectCost

GradesTable

StudentID*

Subject*

Grade

HouseTable

HouseName*

HouseColour

1

¥

1

¥

1

¥

* primary key

Robert Timmer-Arends Mar 2011

